On Boundary Correction in Kernel Estimation of ROC Curves

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Boundary Correction in Kernel Density Estimation

It is well known now that kernel density estimators are not consistent when estimating a density near the finite end points of the support of the density to be estimated. This is due to boundary effects that occur in nonparametric curve estimation problems. A number of proposals have been made in the kernel density estimation context with some success. As of yet there appears to be no single do...

متن کامل

Simple boundary correction for kernel density estimation

If a probability density function has bounded support, kernel density estimates often overspill the boundaries and are consequently especially biased at and near these edges. In this paper, we consider the alleviation of this boundary problem. A simple unified framework is provided which covers a number of straightforward methods and allows for their comparison: 'generalized jackknifing' genera...

متن کامل

Bayesian semiparametric estimation of covariate-dependent ROC curves.

Receiver operating characteristic (ROC) curves are widely used to measure the discriminating power of medical tests and other classification procedures. In many practical applications, the performance of these procedures can depend on covariates such as age, naturally leading to a collection of curves associated with different covariate levels. This paper develops a Bayesian heteroscedastic sem...

متن کامل

Error estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space

In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.

متن کامل

Repairing Concavities in ROC Curves

Declaration This dissertation is submitted to the University of Bristol in accordance with the requirements of the degree of Bachelor of Science in the Faculty of Engineering. It has not been submitted for any other degree or diploma of any examining body. Except where specifically acknowledged, it is all the work of the Author. 3 ABSTRACT Machine Learning applications require learning algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Austrian Journal of Statistics

سال: 2016

ISSN: 1026-597X

DOI: 10.17713/ajs.v38i1.257